

boway 70318

Material Designation

Boway Designation	boway 70318
UNS	C70318
EN	CuNi3CoSi
JIS	-
GB(China)	-

Chemical Composition*

Ni	3	%
Со	0.9	%
Si	0.9	%
Cu	Rem.	
Other	≤0.5	%

* Nominal composition

Application Target

Signal connector	Very suitable
Power connector	Suitable
Miniaturized connector	Suitable
Switch/Relay	Very suitable
Semiconductor	Suitable

Well suited for BTB connectors, particularly for USB type-c, relay springs, high speed connectors and others

90 80 70 60 50 boway 70318 40 30 20 Phosphor Bronze 10 0 200 400 600 1000 1200 800 0 Tensile strength MPa

Characteristics

100

Electrical conductivity % IACS

Copper

Very high strength combined with superb forming properties, medium to high conductivity. Very good stress relaxation resistance. Not sensitive to stress corrosion cracking.

Fabrication Properties

Cold forming	Good
Machining	Not suitable
Electroplating	Good
Hot dip tinning	Good
Laser welding	Good
Resistance welding	Good
Soft soldering	Suitable

Physical Properties*

Density	8.82	g/cm ³
Electrical	50	% IACS
conductivity@20°C	29	MS/m
Thermal conductivity@20°C	190	W/(m·K)
Specific heat capacity	0.38	J/(g·K)
Modulus of elasticity	130	GPa
Poisson's ratio	0.33	
Coefficient of thermal expansion**	17.6	10 ⁻⁶ /K

* Typical values at room temperature for reference

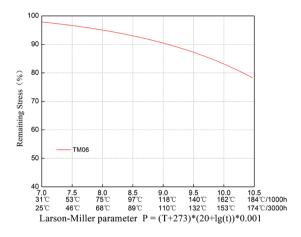
** Average value between 20-300° C

boway 70318

Mechanical Properties

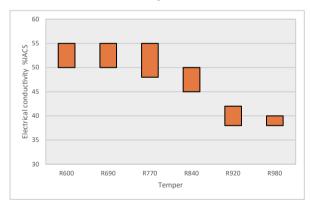
Temper	Tensile strength		Yield strength	Elongation	Hardness
	MPa	ksi	МРа	A50 %	HV
R600(TR04)	≥ 600	≥ 87	540-680	≥4	≥ 190
R690(TM02)	690-830	100-120	≥ 680	≥6	≥200
R770(TM04)	770–900	110-130	≥ 750	≥ 4	≥ 220
R840(TM06)	840-970	122-140	≥810	≥ 1	≥ 240
R920(TM08)	920-1060	133–154	≥ 880	≥ 1	≥260
R980(TM10)	980-1120	142-163	≥ 940	≥ 1	≥ 280

*For reference only


Bendability Bending thickness: ≤ 0.3 mm,R690-R840 bending width:10mm; R920-R980 bending width:1.0mm

Temper	90° R/T		180° R/T		
	Good Way	Bad Way	Good Way	Bad Way	
R600(TR04)	0	0	-	-	
R690(TM02)	0	0	-	-	
R770(TM04)	0.5	0.5	-	-	
R840(TM06)	1	1	-	-	
R920(TM08)	1	1	-	-	
R980(TM10)	3	3	-	-	

90° bend test according to EN ISO7438, 180° bend test according to ASTM B820, shown values might show orange-peel, however no crack.


boway 70318

Packaging

Standard coils with outside diameter up to 1300 mm. Traverse-wound coils with drum weight up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Thermal Stress Relaxation

P=Larson Miller parameter
T=temperature(C)
t=time(h)
Example:
Application conditions: Maintain for 1000 hours at 150°C.
Formula substitution: T = 150, t = 1000

P=(150+273)×(20+lg (1000))×0.001=9.729

Graph reference: When P = 9.729, the stress retention rate is approximately 85%.

Conclusion: Under the conditions of 150°C / 1000h, the remaining stress of this material is close to 85%.

Dimensions Available

Strip thickness 0.05–0.3 mm, other gauges on request. Strip width from 8.5 mm. Electroplated and hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev.2024,10