

boway 51100

Material Designation

Boway Designation	boway 51100
UNS	C51100
EN	CuSn4
JIS	C5111
GB(China)	QSn4-0.3

Chemical Composition*

Sn	4	%
Р	0.03-0.35	%
Cu	Rem.	

* Nominal composition

Application Target

Signal connector	Suitable
Power connector	Notrecommended
Miniaturized connector	Suitable
Switch/Relay	Suitable
Semiconductor	Notrecommended

100 Copper 90 80 Electrical conductivity % IACS 70 60 50 40 30 boway 51100 20 10 0 200 400 600 1000 1200 0 800 Tensile strength MPa

Characteristics

Excellent formability and medium/high strength combined with low sensitivity to stress corrosion cracking. Very good corrosion resistance as well as excellent solderability.

Fabrication Properties

Cold forming	Very good
Machining	Average
Electroplating	Very good
Hot dip tinning	Very good
Laser welding	Good
Resistance welding	Good
Soft soldering	Very good

Physical Properties*

Density	8.8	g/cm ³
Electrical	19	%IACS
conductivity@20°C	11	MS/m
Thermal conductivity@20°C	100	W/(m•K)
Specific heat capacity	0.377	J/(g•K)
Modulus of elasticity	120	GPa
Poisson's ratio	0.33	
Coefficient of	17.8	10 ⁻⁶ /K
thermal expansion**		

* Typical values at room temperature for reference

** Average value between 20–300°C

boway 51100

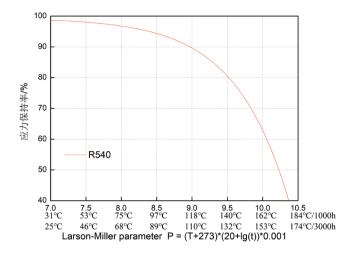
Mechanical Properties (Values Underlined Are For Reference Only)

Temper	Tensile strengt	h	Yield strength	Elongation	Hardness
	MPa	ksi	MPa	A50 %	HV
R380(1/2H)	380-485	55-70	≥290	≥12	<u>110–160</u>
R460(3/4H)	460-565	67-82	≥440	≥6	<u>150–190</u>
R495(H)	495-600	72-87	≥ 485	≥2	<u>160-200</u>
R580(EH)	580-685	84–99	≥560	≥1	<u>190–230</u>
R625(SH)	625-725	91-105	≥605	≥1	<u>200–240</u>
Annealed*	315-370	46-54	≥110	≥ 45	
H01*	315-400	46-58	≥140	≥25	
H02*	380-485	55-70	≥290	≥12	
H03*	460-565	67-82	≥440	≥6	
H04*	495-600	72-87	≥485	≥2	
H06*	580-685	84–99	≥560	≥1	
H08*	625-725	91-105	≥605	≥1	
H10*	660-750	96-109	≥635	≥1	

*According to ASTM B888

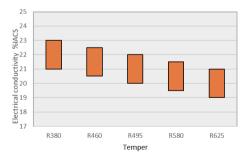
Bendability Bending thickness ≤ 0.5 mm; Bending width: 10 mm

Temper	90° R/T		180° R/T		
	Good Way	Bad Way	Good Way	Bad Way	
R380	0	0	0	0	
R460	0	0	0	1	
R495	0	0.5	0	1.5	
R580	0.5	1.5	1	2	
R625	1.5	2.5	2	3.5	


90° bend test according to EN ISO7438, 180° bend test according to ASTM B820, shown values might show orange-peel, however no crack.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

boway 51100


Thermal Stress Relaxation

Packaging

Standard coils with outside diameter up to 1300 mm. Traverse-wound coils with drum weight up to 500 kg. Multiple-coil up to 3 tons.

Electrical Conductivity

Example: Application conditions: Maintain for 1000 hours at 125°C. Formula substitution: T = 125, t = 1000 $P=(125+273) \times (20+Ig (1000)) \times 0.001=9.154$ Graph reference: When P = 9.154, the stress retention rate is approximately 88%. Conclusion: Under the conditions of 125°C / 1000h, the remaining stress of this material is close to 88%.

Dimensions Available

P=Larson Miller parameter T=temperature([°]C)

t=time(h)

Strip thickness 0.08–3.0 mm, other gauges on request. Strip width from 8.5 mm. Electroplated and Hot-dip tinned strip available.

Fatigue Strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10.000.000 load cycles under symmetrical alternate load without breaking. It depends on the temper selected and can be estimated typically by 1/3 of tensile strength.

This datasheet is for your general information only and is not subject to revision. No claim can be derived from it unless there is evidence of intent or gross negligence. The data given is to our best knowledge, no warranty can be derived from the data provided. The given Info may not replace the customers own tests.

Rev.2024,10